(ID

Department of

COMPUTER

THE UNIVERSITY OF TEXAS AT DALLAS

SCIENCE

Models		Dataset			raining		Embed
TANL		MUC		5	Epochs		Full Text
GTT		WikiEvent		10	Epochs		Sentence
DyGIE++		Adaptable to oth	ers	15	Epochs		

Cornell Bowers C·IS College of Computing

and Information Science

GTT-BERT - 12

Information Extraction Models

- **DyGIE++** (Wadden et al., 2019) is a <u>discriminative</u> multi-task framework. It achieves IE by enumerating and scoring sections (<u>spans</u>) of encoded text and using the relations between spans to detect triggers and events. • GTT (Du et al., 2021) is a <u>sequence-to-sequence</u> event-extraction model that perform the task end-to-end, without using labeled triggers. It is trained to decode a serialized template, with tuned decoder constraints. • TANL (Paolini et al., 2021) is a <u>sequence-to-sequence</u> multi-task model that "<u>translates</u>" input text to augmented languages. For IE, the in-text augmented parts identify triggers and roles. It uses a <u>two-stage</u> approach for event extraction by first extracting trigger then finding arguments for each trigger predicted.

Model (IE-F1)	Input	WordCt	SentCt	IsArg	ArgTyp	Coref	EvntTyp ₂	CoEvnt	EvntCt	Avg
DyGIE++ (41.9)	FullText	58.6	<u>47.0</u>	87.1	83.8	64.7	<u>60.5</u>	73.6	67.2	67.8
	SentCat	<u>57.4</u>	58.9	87.5	85.6	69.2	56.7	<u>67.9</u>	67.0	68.8
GTT (49.0)	FullText	58.6	46.3	<u>88.3</u>	<u>88.5</u>	66.7	60.4	66.4	<u>68.3</u>	67.9
	SentCat	55.8	58.9	<u>88.6</u>	88.0	<u>69.5</u>	<u>57.5</u>	65.07	67.5	68.8
TANL (33.2)	FullText	54.2	43.3	88.2	86.8	66.6	57.8	60.0	65.8	65.3
	SentCat	34.3	40.8	88.2	87.0	65.6	53.5	59.8	67.0	62.0
BERT _{base}	FullText	<u>65.5</u>	45.0	87.8	86.1	75.7	60.4	74.0	63.5	69.7

Probing Performances with Different <u>IE Frameworks</u> and <u>Embedding Method</u>

Table 1: Probing Task Test Average Accuracy. IE frameworks trained for 20 epochs on MUC, and we run probing tasks on the input representations. We compare the 5-trial averaged test accuracy on full-text embeddings and concatenation of sentence embeddings from the same encoder to the untrained BERT baseline. IE-F1 refers to the model's F1 score on MUC test. Underlined data are the best in same embedding method, while bold, overall.

SentCat here refries to embedding sentences individually and then concatenating them. This can be more effective for IE tasks than using embeddings directly from a fine-tuned encoder designed for entire documents. This indicates encoders' poor capacity to capture of **discourse** information. Trained encoders significantly enhance embeddings for event detection (higher accuracy in event count predictions

 $(EvntCt^{\dagger})$. Nevertheless, embeddings lose information for event typing $(EvntTyp 2 \downarrow)$ and coreference $(Coref\downarrow)$

Probing Representations for Document-level Event Extraction Barry Wang, Xinya Du, Claire Cardie

Event Info

with TANL and DyGIE++.

(420+)

Long

Event Probing Performances over Different Input Lengths

Model	FullText Best	FullText Avg	Sent Best	Sent Avg				
WordCount: ≤ 209								
DyGIE++	68.5	67.1	69.7	68.8				
GTT	70.3	68.7	72.1	68.0				
TANL	71.8	70.2	66.3	64.2				
	WordCou	int: 210-420						
DyGIE++	67.0	65.7	67.6	64.7				
GTT	67.6	67.0	66.4	64.7				
TANL	64.8	62.0	63.6	60.8				
	WordCo	ount: ≥ 431						
DyGIE++	70.6	70.2	74.2	72.1				
GTT	69.1	68.7	71.5	70.2				
TANL	67.3	65.2	69.7	68.3				

 Table 2: EvntCt Probing Test Accuracy (%) 5 ran
dom seed averaged. When WordCount \geq 431, both FullText and SentCat embeddings are truncated to the same length (e.g., BERT-base has a limit of 512) for comparison fairness. Concatenated sentence embeddings show an advantage on medium or long texts.

Probing Tasks						
ategory	Illustration	Task	Task Full Name			
urface	● ● ● —> #Words	WordCt	Word Count			
	— — — > #Sent- ences	SentCt	Sentence Count			
emantic	• a.k.a. • ?	Coref	Are Coreferent			
	• in (Any) ?	IsArg	Is an Argument			
	Perpetrator? Victim?	ArgTyp	Argument Type			
vent	Bombing/ Attack?	$EvntTyp_2$	Event Type			
	both in Any ?	CoEvnt	Co-Event			
	• • ->#	EvntCt	Event Count			

• 8 probing tasks across 3 levels on document embeddings • Each non-surface probing task tests an encoding capability necessary for correct IE output. Surface results in appendix. • We use probing model improved over previous works

Datasets

• MUC 3/4: Our document-level data source to create probing tasks, thanks to its rich coreference information. The dataset has 1300/200/200 training/validation/testing documents. Note that 44.6% of the inputs have no corresponding events. A keywordbased trigger was added to every template of the MUC dataset to make it compatible

Probing accuracy on event (up) and semantic (down) info over document-level IE training epoch. 5 random seed results averaged (with std. error bars). Trained encoder gain and lose information in their generated embeddings as they are trained for the IE tasks.

• WikiEvents (Li et al., 2021) results are reported in appendix. It has 200/20/20 training/ validation/testing inputs and has wider ranges of incident types.

Probe acc. on event & semantic information over